Restricted Maximum Likelihood Estimation of Variance Components for Univariate Animal Models Using Sparse Matrix Techniques and Average Information

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivative-free restricted maximum likelihood estimation in animal models with a sparse matrix solver.

Estimation of (co)variance components by derivative-free REML requires repeated evaluation of the log-likelihood function of the data. Gaussian elimination of the augmented mixed model coefficient matrix is often used to evaluate the likelihood function, but it can be costly for animal models with large coefficient matrices. This study investigated the use of a direct sparse matrix solver to ob...

متن کامل

Derivative-intense Restricted Maximum Likelihood Estimation of Covariance Components for Animal Models

INTRODUCTION Estimation of covariance components by Restricted Maximum Likelihood (REML) fitting an animal model is widely carried out using a derivative-free (DF) algorithm to locate the maximum of the likelihood function. While such algorithms have proven robust and easy to use, they are generally slow to converge, often requiring many likelihood evaluations, in particular for multivariate an...

متن کامل

Running head : REML USING DERIVATIVES Restricted Maximum Likelihood Estimation for Animal Models Using Derivatives of the Likelihood

Restricted Maximum Likelihood estimation using first and second derivatives of the likelihood is described. It relies on the calculation of derivatives without the need for large matrix inversion using an automatic differentiation procedure. In essence, this is an extension of the Cholesky factorisation of a matrix. A reparameterisation is used to transform the constrained optimisation problem ...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Dairy Science

سال: 1995

ISSN: 0022-0302

DOI: 10.3168/jds.s0022-0302(95)76654-1